A Generalization of Bernoulli's Inequality

Ilhan M. Izmirli
George Mason University, Virginia

Abstract

In this paper we will give a generalization of the celebratedBernoulli inequality proposed by Jacob Bernoulli in the late seventeenth century.

Keywords: Bernoulli Inequality.

1. Introduction

As is well-known, Bernoulli's inequality provides a lower bound for $(1+t)^{r}$. There are several commonly stated forms of this inequality. One of these is
For every integer $r \geq 1$ and all real $t \geq-1$

$$
(1+t)^{r} \geq 1+r t
$$

For example, for $r=3$, the graphs of $f(t)=(1+$ t) 3 and $g t=1+3 t$ clearly show this to be true:

Another common formulation is the following:
For every even integer r and all real t

$$
(1+t)^{r} \geq 1+r t
$$

This version is depicted for $r=4$, by the graphs of $f(t)=(1+t)^{4}$ and $g(t)=1+4 t$

For more information see Bullen, P. S. (2003).
The inequality first appeared in Jacob Bernoulli's treatise Positiones Arithmeticae de Seriebus Infinitis (Basel, 1689).

However, it is claimed that the inequality is actually due to French polymath René de Sluze. In 1659, de Sluze published his famous Mesolabum seu duse mediae proportionales inter extremas datas per circulum et ellipsim vel hyperbolam infinitis modis exhibitae ${ }^{1}$. In this work, Sluze, among other things, presented the solutions ofthe third- and fourth-degree equations which he obtained geometrically using the intersection of any conic section with a circle and used this inequality. Indeed, the family of curves

[^0]$y^{n}=k(a-x)^{p} x^{m}$ for n, p, m positive integers are still called the pearls of Sluze. For details, see Hofmann (1964).

2. The Main Theorem

Let k, m be positive integers with $1 \leq m \leq k-1$. We define the function $S(t, k, m)$ as

$$
\begin{gathered}
S(t, k, m)=t^{k}-\binom{k}{0}-\binom{k}{1}(t-1)-\binom{k}{2}(t-1)^{2} \\
-\cdots-\binom{k}{m}(t-1)^{m}
\end{gathered}
$$

Now let us proceed to prove our main theorem.
Theorem 1. There exists a function $U(t, k, m)$ such that

$$
S(t, k, m)=(t-1)^{m+1} U(t, k, m)
$$

and

$$
U(1, k, m)=\binom{k}{m+1}
$$

Proof. The proof is by induction on m. Let us show that the result holds for $m=1$.

$$
\begin{aligned}
& S(t, k, 1)=(t-1)\left(t^{k-1}+t^{k-2}+\cdots+1-k\right) \\
& =(t-1)\left[\left(t^{k-1}-1\right)+\left(t^{k-2}-1\right)+\cdots+\left(t^{2}-1\right)\right. \\
& \quad+(t-1)] \\
& =(t-1)^{2}\left[\left(t^{k-2}+\cdots+1\right)+\left(t^{k-3}+\cdots+1\right)+\cdots\right. \\
& \quad+(t+1)+1]
\end{aligned}
$$

Let

$$
\begin{gathered}
U(t, k, 1)=\left[\left(t^{k-2}+\cdots+1\right)+\left(t^{k-3}+\cdots+1\right)+\cdots\right. \\
+(t+1)+1]
\end{gathered}
$$

Then

$$
S(t, k, 1)=(t-1)^{2} U(t, k, 1)
$$

and

$$
U(1, k, 1)=(k-1)+(k-2)+\cdots+1=\frac{k(k-1)}{2}=\binom{k}{2}
$$

Now let us suppose the theorem is true for m and let us prove it to be true for $m+1$:

$$
\begin{aligned}
& S(t, k, m+1)= t^{k}-\binom{k}{0}-\binom{k}{1}(t-1)-\binom{k}{2}(t-1)^{2}-\cdots \\
& \quad-\binom{k}{m}(t-1)^{m}-\binom{k}{m+1}(t-1)^{m+1} \\
&=(t-1)^{m+1} U(t, k, m)-\binom{k}{m+1}(t-1)^{m+1} \\
&=(t-1)^{m+1}\left[U(t, k, m)-\binom{k}{m+1}\right]
\end{aligned}
$$

Since

$$
\begin{aligned}
& U(t, k, m)-\binom{k}{m} \\
& \quad=\left(t^{k-m+1}+\cdots+1\right) \\
& \quad+\left(t^{k-m-1}+\cdots+1\right)+\cdots+(t+1) \\
& \quad=(t-1) U(t, k, m+1)
\end{aligned}
$$

the result follows.
We claim that Theorem 1 is actually a generalization of the Bernoulli's Inequality

Indeed,

$$
S(t, k, 1)=t^{k}-1-k(t-1)
$$

Thus,
For $t \geq 0, U(t, k, 1)$ and thus $S(t, k, 1) \geq 0$, which is Bernoulli's inequality. More specifically,

Theorem 2 (Generalized Bernoulli's Inequality)

(i) Ifmis an odd natural number and $1 \leq m \leq$ $k-1$, we have

$$
S(t, k, m) \geq 0
$$

Equality holds only ift $=1$.
(ii) Ift ≥ 1 then for any $1 \leq m \leq k-1$, we have

$$
S(t, k, m) \geq 0
$$

Equality holds only ift $=1$.

References

Bullen, P. S. (2003). Handbook of means and their inequalities. Dordercht: Kluwer Academic Publishers.

Hofmann, Joseph E. (1964) Über die Exercitatio Geometrica des M. A. Ricci. Centaurus, Vol. 9, Issue 3, p.139-193, March 1964.

[^0]: 1 Work on two mean proportional between the two measurements given by a circle and an ellipse or an infinite hyperbola.

