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Summary: The first-time passage problem of a dynamic 

system is of paramount importance to check the system 

reliability. In this paper the problem is analyzed in the 

case of Fokker-Planck Markov process responses. Both 

the differential approach of solution and the integral one 

are reviewed, but the latter is followed in the 

applications. These regard the Ornstein-Uhlenbeck 

process and the envelope of the response of an oscillator 

with nonlinear stiffness. 
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1. Introduction 

It is often required that an engineering dynamic system 

vibrates within safe prescribed limits in a given time 

interval. If the system is acted by stochastic loads, the 

problem must be formulated in a probabilistic context: 

the probability that the system stay in these limits must 

be evaluated. This is  a very important problem in the 

field of stochastic process theory and applications; it is 

called first-passage time problem that arises in physics, 

chemistry, engineering and biology. In this problem, 

the time when a stochastic process first reaches a 

threshold value, the barrier, is studied.  

Be X(t) a stochastic process defined for continuous 

time t. Let XM(t) the largest value of X in a time interval 

[0, T]:  TttXtXM  0),(max)( . If TP is the 

time when X first crosses a barrier, clearly the event 

btXM )(  implies TTP  . Thus, the following 

probabilities are equal:  

   TTPTbXP PM  ],0[ . In other words 

     TTPTTPTbtXP PPM  1],0[)( . 

The two problems so defined are complementary, and 

one can looks for either probabilities. 

Unfortunately, exact analytical solutions for the 

first-time passage statistics exist only in the case of 

scalar systems, and these suffer from the drawback of 

being cumbersome. In the case of second and higher 

order systems, no exact solutions are available, and the 

analyst must recur to approximate methods. On the 

other hand, the results obtainable for scalar systems 

are useful for systems for two or more states. In fact, by 

referring to the envelope for linear systems, and by 

applying the principles of stochastic averaging for 

nonlinear ones, the analysis of the response of second 

order and higher order systems is reduced to the 

analysis of a scalar stochastic Markovian process. 

Probably, the study of the first-passage time 

problem was initiated by Rice with his inclusion-

exclusion series [1]. By now, the literature on the 

argument is very numerous [2 - 44]: the list of the 

references is not complete, and in some way it reflects 

the personal perspective of the writer. In [2 - 7, 9, 10, 

12, 14, 17, 19, 20, 23, 27, 30, 31, 33, 35, 37, 38, 42] the 

first passage time is studied for scalar Markovian 

processes, which in most cases are Gaussian. The 

majority of the authors uses a differential approach, but 

in [30, 33, 35, 38] Volterra integral equations are 

derived, whose solution is the probability density 

function (PDF) of the first-passage time. Analytical 

solutions are obtained in particular for Wiener and 

Ornstein-Uhlenbeck (OU) processes. The drawbacks 

inherent to these solutions are in that or they are 

expressed as infinite series of trascendental functions 

or as Laplace transforms that are difficult to invert. 

Thus, in the past the analytical solutions have not been 

completely exploited, and asymptotic estimates have 

been searched. 

Many authors have studied the first-passage 

problem for second order oscillators: [11, 13, 15, 16, 

18, 19, 21, 24, 25, 28, 29, 32, 34, 36, 37, 40, 41, 42]. On 

the contrary, there are few studies on higher order 

oscillators: see [39, 43, 44]. Some authors have 

obtained even fair results by using both analytical 

methods and semi-empirical considerations: [19, 21, 

25, 36, 40, 41]. In many studies the problem is reduced 

to the analysis of a scalar process: [8, 11, 16, 18, 21, 22, 

24, 28, 29, 34, 36]. This is accomplished by considering 

the envelope of the response [45] for linear oscillators, 

while for nonlinear ones the stochastic averaging 

method [46] is used. In [13, 15, 37, 42] Rice’s inclusion-

exclusion series is exploited, while Madsen and Krenk 

[32] derive an integral equation. 

This paper is concerned with the first-passage 

problem of a scalar Markov process described by the 

Fokker-Planck-Kolmogorov (FPK) equation [47]. This 

choice is not restrictive inasmuch as the study of 

response of second order oscillators is reducible to this 

case: because of lack of space this topics is not 

discussed (e.g. see [29, 34]). In Sec. 2 the FPK equation 

with initial and boundary conditions suitable for this 

problem is established. Then, the expression of the 

first-passage time PDF is obtained. Secs. 3 and 4 are 
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devoted to the applications and to the conclusions, 

respectively.  

2. Problem Statement  

Consider the stochastic process X: X (, +∞) × Ω →  , 

defined on a probability space (Ω, Σ, P) be an Itô 
diffusion process satisfying a stochastic differential 
equation of the form 

  0 0d ( ) ( ( ), )d ( ( ), )d ( )X t a X t t t b X t t B X t x   ,       (1)      (1) 

where B(t) is a scalar Wiener process (Brownian 
motion), a :   →   and b :   →   are the drift and 

diffusion coefficients, respectively. Eq. (1) is a 
generalized Langevin equation. Thus, the infinitesimal 
generator of X is the Fokker-Planck one, that is: 

                        

 
 
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0 0

0 0
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, ,
( ) , ,
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2
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 

,               (2) 

where  00,, txtxp  is the transition probability 

density function (PDF) of X given 00)( xtX  . In order 

to find  00,, txtxp , the initial and boundary 

conditions for Eq. (2) are  000 ,, txtxp  )( 0xx   

and   0,, 00 txtxp  as x . The relationship 

between a(X) in Eq. (1) and m(x) in Eq. 2 is 

x

b
xbxaxm

d

d
)(

2

1
)()(  , in which the second term 

is the so-called Wong-Zakai-Stratonovich corrective 

term (WZ) [48, 49]. This term is zero if the diffusion 

coefficient does not depend on X. The problem of the 

first-passage time of the process X(t) so defined can be 

solved in two ways: the differential approach, and the 

integral approach, whose fundamental principles are 

given below.  

2.1 Differential approach  

Let xxtxf d),( 0 be the probability that X(t) takes a 

value within )d,( xxx  without having crossed x = b 

in the time ),0( T , given 0)0( xX  . It can be shown 

that ),( 0xtxf satisfies Eq. (2) with the same initial 

condition and different boundary conditions. In the 

barrier b an absorbing boundary is placed, which 

requires 0),( 0 xtbf . Since another boundary 

condition is necessary, a reflecting boundary is placed 

at x = r, which requires [14, 20]  
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                                                                                                      (3) 

The solution of the FPK equation (2) in the unknown 

PDF  0, xtxf  with the initial and boundary 

conditions so established can be looked for either by 
means of the Laplace transform method or by 
separation of variables. In the latter case the solution 
can be put in the equivalent forms 

 


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. (4) 

In the intermediate member of Eq. (4) (x) is the 
steady-state PDF of X(t), that is the solution of Eq. (2) 
with the right-hand-side zero, that is 

exp
)(

)(
2 xb
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,                           (5) 

where c is a normalization constant. The constants kc

are expressed as 

1

d)()()(


















  xxxxc mkkmk ,           (6) 

where  is Krönecker symbol, while  and  depend on 

the boundary conditions (see [20]). The constants ka  

are given by 





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a

kk

kk

k
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.                                             (7) 

Even in this case the limits of integration depend on the 
boundary conditions: see 50.  

The eigen functions )(xk and the eigenvalues k  

satisfy the following Sturm-Liouville problem: 

0)(2)()(2)(2  xxxmxb kkkk ,         (8) 

where the apexes mean derivative with respect to x. Eq. 
(8) has the boundary conditions 

0)()(0)()(  bbrr kk ,                             (9) 
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for the case of one reflecting boundary at x = r and one 
absorbing boundary at x = b, the so-called B-type 
barrier. For this type of barrier Eq. (6) becomes 





1

k
c

km 



 xxxx mk d)()()( .                       (10) 

The use of the last member of Eq. (4) is analogous: see 
[50]. 

Once the PDF  0, xtxf  has been computed, the 

cumulative distribution function (CDF) of TP is obtained 
as 

     00 )0()(, xXtbTPxbtF PTP

 




 xxtxf d,1 0 .                                                       (11) 

It must be pointed out that 

   00 ,d, xtbFxxtxf
MX

b

r
 , which is the CDF of 

the largest value XM of X. 

Some authors proposed asymptotic approximations 
valid for high barrier and/or long t. One is [6, 20, 21, 
27] 

  tb
exbt

PTF
)(010,


 .                                   (12) 

Eq. (12) looks like Cramer's asymptotic CDF of a 
Gaussian process [51], which is based on the 
hypothesis of independent excursions: the mean 
upcrossing rate of zero line, which is infinite for a first 
order Markov process, is replaced by the first 
eigenvalue . Another asympotic CDF has the form of a 
Gumbel distribution:  

      )(expexp0, xxbt
PTF  

(the expressions of  and  are given in [6]). The 
statistical moments of the first-passage time are 
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where 

2

d)()()(
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
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


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


 

b

r
kkk xxxcbB .  

Different but equivalent expressions can be found 
elsewhere, e.g. in [11, 18]. In the limit the mean first 
passage time is 01  , which has a Poissonian fashion. It 

is recalled that the statistical moments of the first 
passage time can be computed by means of the 
Andronov-Pontriagin-Vitt equation that is no treated 
here for brevity's sake: see [52]. However, only the 
equation for the first moment is in general affordable. 

2.2 Integral approach 

Let  txbpT ,0  be the first passage probability density 

for bx  : thus,   ttxbpT d,0 is the probability that 

bx   is attained the first time in )d,[ ttt  given the 

initial condition. Since X(t) is a Markov process, the 
Chapman-Kolmogorov-Smoluchovski equations holds, 

which is written for the PDF's  txbpT ,0  and 

),( 0xtxf [2, 3]: 

                            

      
t

T btxfxbpxtxf
0

00 d,,, . (12) 

Eq. (12) is a convolution integral: taking the Laplace 
transform of both sides and applying the con-volution 
theorem one obtains 

 
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P  ,      (13) 

where s is the Laplace transform parameter, 

 sxb ,0P  is the transform of   txbpT ,0 , while 

 0, xsxF  is that of ),( 0xtxf . Darling and Siegert 

was  not able to invert the Laplace transform in any 
case [2, 3], what was accomplished by Gray in some 
cases [12]. Moreover, he gave the general formula for 
the first-passage time CDF 

),( tbTQ
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where k  are the zeros of   0, xsbF , and the apex 

means derivative with respect to s. The k's are real 
numbers. The first-passage time CDF is denoted with 

the different symbol ),( tbTQ  to underline that it is 

computed by means of a different approach. 

The first-passage time moments 

 )()( bTEbM n
P

T
n   can be obtained directly from the 

result (13) [33]: 

n

n
nT

n
s

bM
d

d
)1()(    sxb ,0P 0s . (15) 

3 Applications 

The applications concern the OU process solution to the 
classic Langevin equation, the energy envelope of a 
second order oscillator with nonlinear restoring force 

having the form )sgn()( xxkxr
n

 , and the second 

order linear oscillator. 
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3.1 First passage of the OU process 

The OU process is the solution of the stochastic 
differential equation (Langevin equation) 

 00)(d2d)()(d xtXBKttXtX  ,  (16) 

where B(t) is a unit strength Wiener process. The 
corresponding FPK equation is 

 
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f
Kfx

xt
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.                                       (17) 

In the equilibrium regime the PDF holds the form (4) 
with 
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which is a Gaussian PDF. 

Before proceeding, the following dimensionless 

variables are introduced: xKy 2 ,   t; the 

barrier becomes bK2 . The Sturm-Liouville 

problem is rewritten as 

0)(2)(2)(  yyyy kkkk ,                       (19) 

where the apexes mean derivatives with respect to y. 
An absorbing boundary condition is placed at y  , 
while a reflecting boundary condition is placed at y  r. 
For the brevity's sake, the derivation of the 
eigenfunctions is not reported; however, it is 
emphasized that these are dependent on the value of r. 
The simplest case is for r   when the eigenfunctions 
are the confluent hypergeometric  

 

(a)

 f(y,t|0)

                   

(b) 

f(y,t|0)

  
Figure 1: comparison of the PDF's )0,( tyf  for   1 (a), and   4 (b). Blue line: one term in the 
series; red line two terms; black line three terms. 

 

(a)

          

(b)

  
Figure 2: comparison of the CDF's of the first-passage time of the OU process:   1 (a), and   4 (b). 
Blue line: Eq. (10); black line Eq. (14) with three terms. 
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functions [53]. Hence, the eigenvalues are the roots of 
the trascendental equations 

   0,21,2 2
11  kF : they are all real and 

positive numbers. Taking the Laplace transform of 

),( 0xtxf  one obtains 

 sxb ,0P
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It is easily recognized that the poles of the denominator 
are the eigenvalues k: one returns to the time domain, 
and uses the formula (14).  

The parameters take the following values: K  1,   

1. In this way, 1][ 22  KXE X . The 

dimensionless barrier is bK2 . The initial 

condition is X(0) = 0. When   1 the first three 

eigenvalues of the confluent hypergeometric function 

 2
11 ,21,2  kF  are: 0.798460, 10.758826, 

30.506530. When   4 

.868869.7,899944.2,037517.0 210 

Clearly, the first eigenvalue is always dominant. In Fig . 

1 the transition PDF's )0,( tyf  solutions of the FPK 

equation (17) are plotted versus the non-dimensional 
time, which is still denoted by t in the plots. The left 
plot refers to   1, while the right plot to   4. In the 
case of low barrier   1 one term in the series is not 
sufficient to have an acceptable result, but two term are 
sufficient: adding a third term there are no appreciable 
changes. In the case of high barrier   4 one term in 
the series gives good results with the exception of the 
first two units of time. The curves with the two terms 
and with three terms are near superimposed: there is a 
very steep increase for very short values of t; then, they 
have a slow decay.  

 

               

Figure 3: left   PTE10log , right    






 212
10log PTE  against the barrier ; Eq. (11) solid line, asymptotic 

sum of the series in Eq. (11) dashed line 
 

In Fig. 2 there are the first-passage time CDF's for  

 1 (a), and   4 (b), respectively. The estimates of the 

series (14) are compared with the asymptotic 

approximation (10): the agreement is almost perfect 

with the exception of a very short time interval starting 

from zero in the plot (a), which cannot be perceived 

examining the figure. 

In Fig. 3 there are the curves of the mean  PTE  

and of the mean square  2
PTE  of the first-passage 

time with respect the barrier level . As both quantities 

take large values as  increases, in the ordinates there 

are the logarithms   PTE10log  and 

   






 212
10log PTE , respectively. The series in Eq. 

(11) are evaluated by taking 4 or 5 terms into account; 

however, the terms beyond the second give a little 

contribution. The curves deriving from the series are 

the continuous line in the plots, while the dashed lines 

are obtained by means of the asymptotic sum of the 

series as in the right-hand-side of Eq. (11). There is a 
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substantial agreement between the two approaches. 

The general trends and the large values of the moments 

agree with the findings of [20] for different boundary 

conditions.   

3.2 Oscillator with nonlinear restoring force 

Consider the oscillator 

),(2)sgn(2
0 0 tWwX

n
XXX            (21) 

where )sgn(  denotes the signum function, and W(t) 

is a Gaussian white noise with unit power  

spectral density. The mechanical energy of the 

oscillator is 

1
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2
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
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n
x

n

x
xxE


 .                                     (22) 

For brevity's sake the derivation of the stochastic 

differential equation for the energy E is not detailed: 

see [24, 46, 54]. It reads as 

),(d)(d)(d tBEtEmE                                       (23) 

which is analogous to the Langevin's equation. In Eq. 

(23) B(t) is the standard Brownian motion, the formal 

derivative of the unit strength Gaussian white noise 

W(t). In the case of only one external excitation of 

Gaussian white noise type the drift and the diffusion 

coefficients are, respectively 

E
n

n
wXwE

wXXhXEm
t

3

1
42)(

),()(

0
2

0

0












          (24 a,b), 

where ),( XXh   is the damping function (simply 

XXXh  ),(  in this case) and 
t

  the time 

averaging operator for which the reader is referred to 

[24, 46, 54]. 

At this point one proceeds as in the scalar case. 

Omitting the passages, the CDF of the first passage time 

is given by  

 1),(tTF 









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

0

11 ,
1

,
tk

kk
ke

caa
Fc . (25) 

Again, the eigenvalues k are those of the confluent 

hypergeometric function;  is the barrier for the non-

dimensional energy  12
0

 n
EE . The 

expressions of the coefficients ck as well as those of the 

constants a and c are not reported because for brevity's 

sake; the latter depend on the system parameters only. 

It is emphasized that this approach is related to the 

crossings of a critical value of the energy (type E 

barrier). On the contrary, in the case of Eqs. (1) and 

(16) the crossings of the barrier btX )(  (type B 

barrier) or of the double barrier btX )(  (type D 

barrier) are considered.  

There is not a relationship among the statistical 

quantities of the E crossings and those of B and D 

crossings. 

For the same reason only the first-passage time 

CDF's of the cases , n  3, 4,2,20   are 

shown in Fig. 4. In this case using one term in the series 

does not give a realistic picture of the CDF. However, 

three terms are sufficient. The statistical averages of 

the first passage time are 0.324 s and 0.886 s for the 

two non-dimensional barriers, respectively, 

3.3 Second order linear oscillator  

If in eq. (21) 1n , we retrieve the second order linear 

oscillator, say 

).(22
0 0 tWwXXX                                 (26) 

For a second order linear oscillator several approaches 
have been proposed for studying the prob-lem of the 
first passage time: however, Eqs. (23 -25) are valid 
even in this case and are used herein. The first-passage 
time CDF's for , n  1,  

4,2,0.1,2 00  w  are shown in Fig. 5. 

One term in the series (25) is not sufficient to seize the 

exact CDF, but three terms are for the low barrier; four 

terms are necessary for the highest barrier. It is noted 

that the CDF's are very steep for 
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Fig. 4: CDF of the first-passage time for the energy of the oscillator (21) with   1, n = 3, 2,20   in the left 

plot, 4  in the right plot; red line one term in the series (25), black line three terms. 

 

           
Fig. 5: CDF of the first-passage time for the energy of the linear oscillator (26) with   1, n = 1, 2,20   in 

the left plot, 4  in the right plot; red line one term in the series (25), black line three terms, blue dotted line four 

terms. 

 

short times; then, they become smooth. For the highest 

barrier including only one term in the series causes 

very gross errors. The average first passage times are 

0.952 s and  3.019 s for the two barriers respectively. 

As previously advanced, even in the simplest case of 

the linear second order oscillator there are not exact 

results for the first passage time problem, but many 

approximate methods were proposed. As the CDF's in 

Fig. 5 refers to an E type barrier, now we want to 

consider the D barrier problem. The simplest 

approximation is to assume that upcrossings and 

downcrossings constitute a homogeneous Poisson 

process [51]. As the response of the oscillator (26) is 

Gaussian, the CDF of the first passage time for a type D 

barrier is given by 

),(tTF 







  2

0

2

2exp1 et ,                       (27) 
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Fig. 6: CDF of the first-passage time for the displacement of the linear oscillator (26) with   1, n = 1, 

2,20   in the left plot, 4  in the right plot; red line Vanmarcke's equation  (29), black line Poisson 

assumption (27). 
 
where Xb   (here b is a displacement), and 0  

is the mean upcrossing rate of zero line, say 

0
X

X





2


.                                                                   (28) 

As in this case  

  ,2,2 0
22

00
2  ww XX Eq. (28) 

reduces simply to  20 . 

The results of Eq. (27) are compared with the CDF 
proposed by Vanmarcke [19], which in part stems from 
empirical considerations: 

),(tTF

 
 

2
2

2

0 2

1 exp 2
1 1 exp exp 2

2 1 exp 2

q
t e 

 






        
         

      
 

. (29) 

In Eq. (29) q is the so-called Vanmarcke's parameter: 

20
2
11 q , being  2,1,0 kk  the 

spectral moments of the one-sided power spectral 

density of the response of the oscillator. 

The CDF's resulting from the approaches are plotted 

in Fig. 6 for barriers 2  (left plot) and 4  (right 

plot). Some differences are evidenced as Poisson CDF 

tends to one faster, but in substance the two 

approaches are not in contradiction. The differences 

are more marked in terms of averages of the first 

passage time: assuming Poisson crossings they are 

3.695 s and 1490.48 s for the two barriers, respectively. 

By using Vanmarcke's Eq. (29) they are 5.177 s and 

1841.33 s. In any case the assumption of Poisson 

crossings is conservative. A direct comparison of the 

distribution functions of Fig. 6 with those of Fig. 5 is not 

possible as they refer to two different barriers. How-

ver, it is noticeable that crossing a displacement 

threshold requires much longer times than cross-ing a 

critical value of the energy. 

4 Conclusions 

We have examined the first passage problem for scalar 

Markov processes generated by a generalized Langevin 

equation. In order to solve the problem, two 

approaches are possible: the integral approach and the 

differential approach; both give raise to exact results. 

On the other hand, in general the integral approach 

requires working in the Laplace transform domain: in 

many case the solution that one finds cannot be 

inverted analytically. 

The differential approach is based on writing and 

solving the Fokker-Planck-Kolmogorov equation or its 

adjoint the backward Kolmogorov equation with 

appropriate initial and boundary conditions. Among 

the methods for solving these equations, in many cases 

the ansatz of separation of the variables is fruitful: in 

the next step an eigen problem must be solved. 

Unfortunately, exact solutions for the first passage 

problem do not exist for second and higher order 

systems. Thus, the analyst must reduce the problem to 

a scalar one: the stochastic averaging methods are 

suitable to do this. 



International Journal of Innovative Research in Sciences and Engineering Studies (IJIRSES) 

www.ijirses.com

 

© 2023, IJIRSES                                                                                                                                                                                   Page 9 

The applications regard an Ornstein-Uhlenbeck 

process and a second order oscillator with restoring 

force of the form )sgn(2
0 X

n
X . In order to reduce 

the problem to a scalar one, the stochastic averaging of 

the energy envelope is used: in this way, the crossings 

of a critical value of the energy is considered. The cases 

3n  and 1n  are examined: in the latter case we 

have the classical second order oscillator.  
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